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ABSTRACT

Aims. Nanoflares in quiet-Sun regions during solar cycle 24 are studied with the best available plasma diagnostics to derive their
energy distribution and contribution to coronal heating during different levels of solar activity.
Methods. Extreme ultraviolet (EUV) filters of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory
(SDO) are used. We analyze 30 AIA/SDO image series between 2011 and 2018, each covering a 400′′ × 400′′ quiet-Sun field-of-view
over two hours with a 12-second cadence. Differential emission measure (DEM) analysis is used to derive the emission measure (EM)
and temperature evolution for each pixel. We detect nanoflares as EM-enhancements using a threshold-based algorithm and derive
their thermal energy from the DEM observations.
Results. Nanoflare energy distributions follow power-laws that show slight variations in steepness (α = 2.02 to 2.47) but no correlation
to the solar activity level. The combined nanoflare distribution of all data sets covers five orders of magnitude in event energies
(1024 to 1029 erg) with a power-law index α = 2.28 ± 0.03. The derived mean energy flux of (3.7 ± 1.6) × 104 erg cm−2 s−1 is one
order of magnitude smaller than the coronal heating requirement. We find no correlation between the derived energy flux and solar
activity. Analysis of the spatial distribution reveals clusters of high energy flux (up to 3 × 105 erg cm−2 s−1) surrounded by extended
regions with lower activity. Comparisons with magnetograms from the Helioseismic and Magnetic Imager (HMI) demonstrate that
high-activity clusters are located preferentially in the magnetic network and above regions of enhanced magnetic flux density.
Conclusions. The steep power-law slope (α > 2) suggests that the total energy in the flare energy distribution is dominated by the
smallest events, i.e., nanoflares. We demonstrate that in the quiet Sun, the nanoflare distributions and their contribution to coronal
heating does not vary over the solar cycle.
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1. Introduction

The temperature of the solar corona of several million Kelvin
is one of the most challenging mysteries of solar physics. Ever
since the discovery of the forbidden lines of highly ionized iron
atoms in the coronal spectrum by Grotrian (1939) and Edlén
(1943), many studies have been carried out to solve the result-
ing coronal heating problem. The multi-million Kelvin coronal
temperature results in heat losses of at least 3× 105 erg cm−2 s−1

(Withbroe & Noyes 1977), which must be continuously balanced
by energy input to prevent cooling and collapsing of the corona.
However, the heat flux from the lower atmospheric layers can-
not provide the required energy because the temperatures there
are much lower. Consequently, some processes have to convert a
non-thermal energy source into thermal energy in order to main-
tain the coronal plasma at stable million-Kelvin temperatures.
Several models have been developed and extensively tested, and
they provide us with at least part of the explanation. They can
basically be assigned into two groups, which explain coronal
heating either by various types of magnetized waves that are ini-
tiated by photospheric plasma motions, propagating upward into
the corona and dissipating their energy there or by small-scale
magnetic reconnection events dubbed nanoflares (e.g., reviews
by Klimchuk 2006; Parnell & De Moortel 2012).

Nanoflares were foreseen by Parker (1988) and could pro-
vide a solution to the coronal heating problem if they occur at a
sufficiently high rate. They are the result of photospheric gran-
ular and supergranular motions that move the base of field lines
in a random-walk-like manner and result in field lines that are
twisted and wrapped around each other (Parker 1983). Current
sheets form at the interface of misaligned flux tubes and build
up free energy, which is then spontaneously released by mag-
netic reconnection and partially converted into thermal energy.
Self-organized criticality models can explain this process of ac-
cumulation until a critical state followed by a subsequent release
(Lu & Hamilton 1991). Here, regions of all sizes can be on the
verge of stability and produce reconnection avalanches that we
observe as flares over many orders of magnitude in event energy.

It has been shown that the occurrence frequency (dN/dE)
of solar flares generally follows a power-law distribution (e.g.
Dennis 1985; Crosby et al. 1993; Veronig et al. 2002; Hannah
et al. 2008), in line with the scale-invariance expected from self-
organized criticality models. The power-law can be expressed
as a function of flare energy (E), a power-law index (α), and a
normalization factor (A):

dN
dE

= AE−α (1)
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Integration over the whole energy range (from Emin to Emax) of
flares gives the total energy released:

W(Emin ≤ E ≤ Emax) =

∫ Emax

Emin

dN
dE

EdE =
A

2 − α
[E−α+2

max − E−α+2
min ]

(2)

Hudson (1991) first pointed out that the relative contribution
of small and large flares to the total energy in such a power-
law distribution depends critically on the power-law index α. In
the case α > 2, the lower energy range of the frequency dis-
tribution dominates the total energy input, making it possible
for nanoflares to provide sufficient energy for coronal heating.
Observations of regular flares have shown that they cannot pro-
vide enough energy and that their power-law index is less than 2
(Crosby et al. 1993). In order to explain coronal heating through
magnetic reconnection, the nanoflare distribution may have to
become steeper than the common power-law observed for large
flares (Lu & Hamilton 1991). However, it has to be noted that the
relative contribution alone cannot be used to determine whether
the sum of all events provides enough energy.

Nanoflares are the smallest flare-like energy releases on the
Sun. While regular flares and microflares occur only in Active
Regions (e.g. Stoiser et al. 2007; Hannah et al. 2011; Fletcher
et al. 2011), nanoflares occur also in quiet-Sun regions (e.g.
Krucker & Benz 1998; Parnell & Jupp 2000) and are thus a
possible means to serve for the heating of the quiet (non-AR)
corona. Several studies have attempted to determine the fre-
quency distribution of nanoflares and their contribution to coro-
nal heating. Early observational nanoflares studies determined
the nanoflare energies from the emission measure and temper-
ature calculated using the spectral line ratio method applied to
two EUV filters. Data was used either from the EUV Imaging
Telescope (EIT) (Delaboudinière et al. 1995) onboard the So-
lar and Heliospheric Observatory (SOHO) or the Transition Re-
gion and Coronal Explorer (TRACE) (Handy et al. 1999). These
nanoflares studies (Krucker & Benz 1998; Parnell & Jupp 2000;
Aschwanden et al. 2000; Benz & Krucker 2002; Aschwanden &
Parnell 2002) found power-laws in the range of 1.8 to 2.7 that
allowed no definitive conclusion on whether small or large flares
contribute more energy to the coronal heating. The used instru-
ments also only allow rudimentary event energy calculation be-
cause of the limited temperature coverage of the imaged wave-
lengths. In a more recent study, Joulin et al. (2016) use the At-
mospheric Imaging Assembly (AIA) aboard the Solar Dynamics
Observatory (SDO) because of its much better plasma diagnos-
tics and arrive at a power-law index of 1.65 and 1.73 for the
thermal event energy with background removal for an active and
quiet-Sun region, respectively. They were, however, limited to
pre-calculated DEMs from Guennou et al. (2012) that lack the
full AIA temporal resolution.

The listed nanoflare studies used different instruments with
different spatial and temporal resolution and diagnostic capabil-
ities. They further used different event detection methods, ener-
gies were calculated as thermal energy or radiative/conductive
losses, and they also varied in other assumptions. Lastly, they
focused on regions of different solar activity, ranging from quiet-
Sun regions to active regions, and were done at different times
during the solar cycle. While all studies provide us with impor-
tant information about nanoflares distributions in different solar
regions, they are hard to compare, and we can not conclude how

observations of similar regions might change when done at dif-
ferent times during the solar cycle.

By observing nanoflares in quiet-Sun regions throughout dif-
ferent phases of the solar cycle with the same instrument and the
same detection algorithm, we can investigate about systematic
changes to the slope of the power-law, the energy input into the
corona, and other nanoflare parameters and check their correla-
tion to the level of solar activity. Any changes obtained, whether
they are actual variations of the observed nanoflares or variations
induced by the instrument and image properties (e.g., count rate
and contrast changing due to degradation), can aid the design of
future studies and help compare previous studies with each other.

Since its launch in 2010, the Atmospheric Imaging Assem-
bly (AIA) onboard the Solar Dynamics Observatory (SDO) has
captured full disk, high spatial resolution solar images with a
high cadence at multiple EUV wavelengths. The available data,
therefore, covers a significant portion of solar cycle 24. Filter-
grams are recorded at 6 coronal EUV wavelengths with different
temperature responses. This allows us to derive detailed plasma
diagnostics from these images using Differential Emission Mea-
sure (DEM) analysis.

This paper is structured as follows. In section 2 we describe
the data sets and DEM analysis, the developed event detection
algorithm, and the event energy calculation. The results of this
analysis are presented in section 3. We show the observed fre-
quency distributions, event numbers, energy flux, spatial distri-
bution, and event areas for all data sets and correlate them to the
solar activity cycle. Furthermore, the combined frequency distri-
bution and energy flux from all data sets are derived. Section 4
follows with a discussion of the obtained power-laws and their
implications for the contribution to coronal heating of the de-
tected events. Finally, in section 5 we present our conclusions on
the applied methods and the results obtained.

2. Methods

2.1. Data

We use data from the Atmospheric Imaging Assembly (AIA;
Lemen et al. 2012) onboard the Solar Dynamics Observatory
(SDO; Pesnell et al. 2012) that orbits the Earth in a geosyn-
chronous orbit since 11 February 2010. The AIA instrument con-
sists of four individual f/20 Cassegrain telescopes with 20 cm
primary optics, active secondary mirrors, and a CCD sensor with
4096 × 4096 pixels, each corresponding to a spatial sampling of
the solar disk with 0.6′′. With this configuration, AIA produces
full disc images of the Sun in multiple wavelengths with a 1.5′′
spatial resolution at a standard operating cadence of 12 seconds
in the EUV and 24 s in the UV (Lemen et al. 2012).

We use images taken in the six extreme ultraviolet (EUV)
channels (94, 131, 171, 193, 211, and 335 Å) that are centered
on wavelengths corresponding to essential iron lines at various
ionization stages (Fe xviii, Fe viii and Fe xxi , Fe ix, Fe xii and
Fe xxiv, Fe xiv, and Fe xvi). These EUV wavelength channels are
not only sensitive to the line’s peak formation temperatures (log
T [K]: 6.8, 5.6 and 7.0, 5.8, 6.2 and 7.3, 6.3, 6.4) but show a
much broader temperature response that makes the chosen EUV
wavelengths sensitive to plasma temperatures in a range of at
least 0.1 to 20 MK (Lemen et al. 2012; Boerner et al. 2012).

To obtain a uniform distribution of data sets over the solar
cycle, we searched for suitable image series in February, April,
August, and November of each year. All image series include an
observation duration of 2 hours with the full AIA cadence of 12
seconds and focus on the center of the solar disk to minimize
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Fig. 1. Groups of the first AIA 171 Å, 193 Å, and 335 Å images for each of the 30 data sets plus the HMI line-of-sight magnetogram (saturated at
±15 G.) from the beginning of each observation series. All images focus on a 400′′ × 400′′ FOV around the center of the solar disk. The start of
the observation time is displayed above each image group, and the complete data sets consist of all images taken during the two hours following
the shown images.

influences from projection effects and to have similar observa-
tion conditions for all sets. To select the data sets, beginning on
the first day of the selected month, image series with the desired
duration and field-of-view (FOV) were selected based on the fol-
lowing criteria: No active regions or coronal holes in the consid-
ered FOV and no flares during the two-hour observation period.

The exclusion of active regions and coronal holes ensures that
we only include regions of the quiet Sun in the analysis. Exclud-
ing data with simultaneous flares (even outside the considered
FOV) prevents the use of short-exposure AIA images, which
would result in low counts in the quiet-Sun regions and conse-
quently poor DEM performance. If no such image series could
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be found for the first day of the month, the search was contin-
ued on subsequent days until all criteria were fulfilled satisfacto-
rily. Especially at times of high solar activity, meeting all criteria
was challenging, and image series of an as-quiet-as-possible Sun
were chosen. The availability of suitable AIA data was limited to
a period from February 2011 to May 2018. The limiting factor
was poor DEM reconstruction in quiet-Sun regions at the later
periods, which is most probably related to the strong degrada-
tion of some of the AIA filters. A compilation of the first images
of each data set is shown in Fig. 1 for the 171, 193, and 335 Å
AIA filters. Line-of-sight magnetograms from the Helioseismic
and Magnetic Imager (HMI; Schou et al. 2012), onboard SDO,
are included for the beginning of each observation series.

The selected image series were downloaded from the Joint
Science Operations Center (JSOC) as full-resolution level 1 data
using the available im_patch processing method, which allows
images to be pre-cropped to a tracked sub-image surrounding the
region of interest before downloading. We differentially rotated
all acquired images of a data set to the time of the first image
and then cropped them to the final dimensions of 400′′ × 400′′
around the center of the solar disk.

Before the DEM reconstruction, clusters of N ×N pixels can
be binned in the AIA maps to increase the signal-to-noise. A bin
factor N reduces the total number of pixels in an image by N2,
increasing the DEM signal-to-noise ratio by about N, since the
count rate increases by N2, while the Poisson error increases by
only N. In addition, the number of pixels that deliver no DEM
results or unphysical solutions (e.g., because of negative pixel
values in some of the high-temperature filters) is significantly re-
duced. The combination of fewer unsuitable pixels and improved
signal-to-noise ratio leads as a whole to fewer missing solutions
and more stable DEM results. A further advantage is a reduction
in computation time by about N2.

However, a significant drawback is the loss of spatial res-
olution and consequently a possible reduction in sensitivity to
events smaller than the dimensions of the binned pixel. While
some binning appears necessary to obtain reliable and robust
DEM results, it should be used cautiously, as detecting the small-
est possible events is a critical aspect of nanoflare studies. As a
compromise, we used the bin-factor N = 4 for the analysis per-
formed in this study. It strikes a good balance between reduction
of the number of unusable DEM pixels on the one hand and the
ability to still detect small events on the other hand. A bin-factor
of N = 4 results in a pixel resolution of 2.4′′ for the AIA images.

As a measure of the solar activity level, we use the 13-month
smoothed monthly mean sunspot number derived from the re-
vised sunspot numbers V2.0 (Clette et al. 2014). From now on,
we will use the term international sunspot number (ISN) to re-
fer to this 13-month smoothed data unless otherwise mentioned.
The data was downloaded from the SILSO World Data Center
(2010).

2.2. Differential Emission Measure analysis

We use the regularized inversion algorithm developed by Hannah
& Kontar (2012) to perform the DEM analysis. Required inputs
include a map structure of the six selected AIA EUV wavelength
channels (94, 131, 171, 193, 211, 335 Å), the edges of the de-
sired temperature bins, and an AIA temperature response func-
tion. The map structures are created by using each 193 Å image
in a data set as a reference and then adding the images of the
other five wavelengths with the smallest time separation (typi-
cally a few seconds) from the reference image. We use a tem-

perature range of 0.2− 8 MK divided into 20 evenly spaced log-
arithmic temperature bins because we find that in this interval,
the resulting solutions are well constrained by the AIA temper-
ature sensitivity, and the range is wide enough for the quiet-Sun
regions under study. To account for instrument degradation, we
always apply the temperature response function for the starting
time of the current data set.

Using this approach, we compute the DEM for each time
step in each pixel and for all datasets. We then calculate for each
pixel the total emission measure (EM) of all temperature bins
(∆T )

EM =
∑

DEM(T ) · ∆T (3)

and the DEM-weighted average temperature (T̄ ) (cf. Cheng et al.
2012; Vanninathan et al. 2015)

T̄ =

∑
(DEM(T ) · ∆T · T )∑

(DEM(T ) · ∆T )
(4)

for each time step and pixel.

2.3. Event detection algorithm

The detection algorithm searches for events in the derived EM
time evolution of each pixel. Three user-specified parameters
control crucial steps of the algorithm: the detection interval, the
threshold factor, and the combination interval.

First, we compare each time step’s EM value against all pre-
vious and following values within a set interval. This detection
interval is defined as the number of 12-second time steps that
precede and follow the current time step. If the EM value of the
current time step is higher than any other value in the interval, it
is marked as a candidate event.

For each marked candidate event, the difference in EM value
relative to the minimum EM value since the last candidate event
is calculated. The event is accepted if the EM change exceeds
a specified threshold. This threshold is defined by multiplying
a base threshold, which is calculated for each pixel individually,
by a global integer threshold factor. To calculate the base thresh-
old, the standard deviation of variations in the EM evolution of
each pixel from one time step to the next is used. First, the differ-
ences between successive time steps over the entire data set are
calculated for each pixel. Then, the standard deviation of these
differences is calculated, excluding the upper 10% of the abso-
lute values. We do this to primarily capture EM variations caused
by noise fluctuations and to exclude high values caused by actual
events.

Since nanoflares can cover larger areas than a single binned
AIA pixel, an algorithm had to be implemented to group detected
events in neighboring pixels if they occur within a certain time
interval. This interval is defined by the last parameter, the com-
bination interval, which specifies the number of 12-second steps
in each time direction in which events from adjacent pixels are
combined into one event. Adjacent pixels could either include
all surrounding eight pixels or just the ones in the x and y di-
rection (a total of four). Previous nanoflare studies used both ap-
proaches, and there is no clear conclusion on which one should
be preferred. Krucker & Benz (1998) only combined events from
the nearest four neighbors with good results, and we also found
this approach sufficient for combining events that cover more
than one pixel. A higher number of pixels searched for related
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events mainly increases random encounters and false combina-
tions with little benefit to detecting large-scale events. Therefore,
our algorithm only searches for related events in the x and y di-
rection and omits the diagonals. We define the total area of an
event as the number of pixels combined in this process.

2.4. Algorithm parameters

Poorly chosen parameters can favor or limit the detection of cer-
tain event energies and thus alter the event distribution, power-
law index, and other derived nanoflare properties. However, it
has already been shown that finding the perfect event definition
is a very difficult task for which there is no clear solution (see
Parnell (2004); Parnell & De Moortel (2012)). Our experiments
with different definitions and parameter settings during the de-
velopment of the algorithms have shown similar variance in the
final results. Thus, we will not attempt to provide a definitive an-
swer as to the best event definition. Instead, our goal was to find
reliable parameters that could be used for all datasets and pro-
vide comparable results. In addition, our event definition should
be suitable for comparison with previous studies. For this aim,
each parameter was tested within a reasonable range, and we
then selected the most appropriate one for the final analysis.

For the event detection interval, we tested values of D = 1, 2,
3, and 4. D = 1 accepts only continuous, uninterrupted increases
in the emission measure. During the rising phase, a single low
data point splits an event into multiple segments. D = 2 solves
this problem by allowing an event to continue after the interrup-
tion. D = 3 or 4 can provide even more visually appealing results
but discriminate against smaller events. We have further used a
detection interval of D = 2 to reduce unwanted splitting effects
but remain sensitive to the smallest events.

We have tested threshold factors of F = 3, 5, 7, and 9 and
found that an interval of F = 5 to 7 gives robust results. F = 3
results in the largest number of events found, many of which
are noise, leading to numerous unwanted event combinations.
With F = 5, the number of events detected decreases, and so
does the probability of incorrect combinations. With F = 7, the
number of events decreases further but is still usable. At F = 9,
only a small number of events remain due to the high energy
threshold. In further analysis, we will use F = 5 to exclude most
of the noise but still remain useful count statistics for the latter
frequency analysis.

Lastly, we examined the effects of combination intervals C =
0, 1, 3, 5, 7, and 9. We found satisfactory results for values of
C = 3 to 7. C = 3 appears to be the lower acceptable limit for
reliably combining larger events, while C = 5 results in even
less fragmentation of large events into smaller ones and provides
more visually appealing results. Increasing this to C = 7 may
be beneficial in combination with a high threshold factor (e.g.,
F = 7) but generally produces results similar to C = 5. In stud-
ies using EIT data, good results have been obtained by either
combining only pixels that peak simultaneously or by allowing
combinations with the previous or subsequent time step. Benz &
Krucker (2002) argue about the optimal time interval for com-
bining events in studies with EIT data. They analyzed studies
with intervals of ±1 to ±3 min between peaks and concluded that
the optimal time interval is closer to ±1 min. Using the frequency
of events found in Krucker & Benz (1998), they calculated that
the interval of ±3 min has a 45% chance of producing random
encounters in the four adjacent pixels. This chance decreases to
15% when the interval is only ±1 min. Since our binned AIA
data has a spatial resolution of 2.4 ′′compared to the 2.6 ′′of the
EIT instrument, we can expect similar numbers. With an AIA

image cadence of 12 seconds, we must use an interval of ±5
time steps to obtain the same interval of ±1 minute. This factor
is what we use in the further analysis.

In summary, the selected parameter set has an event detection
interval of D = 2, a threshold factor of F = 5, and an event
combination interval of C = 5. For more details and illustrations
of the different settings, we refer to the thesis of Purkhart (2021).

2.5. Event energies

We calculate the thermal energy input of the accepted EM en-
hancements as

Eth = 3kBT A
√

∆EM q h (5)

where kB is the Boltzmann constant, T the temperature during
EM peak derived from the DEM profiles, ∆EM the increase in
emission measure in cm−5, A the total area of the event, q is the
filling factor, and h the line-of-sight thickness of the event.

We choose a filling factor of q = 1 and estimate the line-of-
sight thickness by the extent of the event as h =

√
A, where A is

the total event area as defined in sec. 2.3. This definition assumes
that all events are loops with a length equal to their width and has
been found to give plausible results for studies comparing events
over multiple energy ranges (Benz & Krucker 2002).

3. Results

3.1. Frequency distributions

Nanoflare frequency distributions are obtained by constructing
a histogram from all event energies in a given data set. We di-
vide the event energies into 50 logarithmic bins uniformly dis-
tributed over the energy range from 1023 to 1029 erg. The number
of events in each group is normalized by the linear energy range
covered by that bin, the two-hour observation time, and the area
of the observed FOV. Figure 2 shows the created nanoflare fre-
quency distributions for all 30 data sets. They are all character-
ized by a maximum event frequency at about 1024 erg (cut-off
energy) with a sharp turn-over towards the lower energy range.
We find that all frequency distributions closely follow a power-
law starting at the cut-off energy and continuing to at least 1027

erg, with some distributions extending to even higher energies
up to 1029 erg.

The measurement errors shown are derived by assuming a
Poisson error statistic. Therefore, the error equals the square root
of the number of events in that bin. We propagate this Poisson
error through the normalization steps and the logarithmization of
the histogram to obtain the displayed errors.

The power-law index α and its standard deviation σ are de-
rived by a linear fit in log-log space starting at the energy bin
with the maximum event frequency and including all non-zero
frequencies of the higher energy bins. We omit the indicated er-
rors for the linear fit, resulting in a fit where each energy bin
considered is treated with equal weight. Therefore, a small num-
ber of large events could significantly affect the steepness of the
fit and the resulting power-law index. However, we find that this
method results in a linear fit that better reflects the overall slope
of the frequency distributions. When Poison errors are used as
weights (e.g. Joulin et al. 2016), the fit is almost entirely deter-
mined by the lower energy range since these bins contain the
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Fig. 2. Nanoflare frequency distribution for each data set over the years 2011 to 2018 during solar cycle 24. The start date and time of the
corresponding data set are given on top. Events are extracted with the detection interval set to D = 2, a threshold factor of F = 5, and a
combination interval of C = 5. A linear fit (blue) without the use of the weights derived from the counting errors (red) was used to extract the
power-law index (α) and its fitting error (σ).

majority of counts. Errors from instrument noise, DEM recon-
struction, threshold implementation, event combination, and en-
ergy calculation are not considered. For most of these errors, the
effects on specific energy regions of the histogram are difficult to

determine, but they should affect the distribution independently
of the count statistics.

The individual datasets produce power-law indices in the
range of 2.02 to 2.47 with the chosen fitting method. Figure
3 shows these derived power-law indices as a function of time
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Fig. 3. Top: Power-law index α (left) and frequency at 1025 erg (right) as a function of time along with the 13-month smoothed monthly mean ISN.
The fitting error for both parameters is shown as red vertical lines. Bottom: Scatter plots of both fitting parameters against ISN. A linear function
(blue) was fitted to the data, yielding the indicated Pearson correlation coefficient r together with the uncertainty range.

and correlated to the ISN. We fit a linear function and calcu-
late the Pearson correlation coefficient. The uncertainty range of
the correlation coefficient is determined utilizing bootstrapping
with 10000 resamples. We find that the power-law index shows
no significant correlation (r = 0.17 ± 0.18) to the ISN, i.e., no
dependence on the solar activity level.

We also show the same plots for the occurrence frequency
at 1025 erg as determined by the fit. This frequency represents
the second fitting parameter (A in Eq. 1), but with the y-axis
shifted to 1025 erg. This shift has the advantage that it reduces
the projection of steepnesses (α) variations onto a far-away axis
and can, therefore, be used as a better measure of the overall
frequency of the observed distributions at a representative event
energy. The frequency at this energy level shows a slight de-
crease during the years 2012 and 2013, but we find no correla-
tion (r = −0.13 ± 0.15) to the ISN. Correlations of both param-
eters to the monthly mean ISN (i.e. without 13-month smooth-
ing) were also calculated but yielded even lower coefficients of
r = 0.10 ± 0.20 and r = −0.05 ± 0.15, respectively.

Since there is no dependence on the solar cycle phase, in
addition to analyzing the data sets individually, we also com-
bine them to obtain better statistics of the main nanoflare pa-
rameters in quiet-Sun regions during solar cycle 24. In Figure
4 we present the event frequency distribution from this com-
bined data set with a total observation time of 60 hours. We
use the same parameters as for the individual data sets to ex-
tract the events and fit a power-law using a linear fit in log-log
space without weights. The power-law fit shows good agreement
with the whole frequency distribution and gives a power-law in-
dex of α = 2.28 ± 0.03. The detected events cover more than
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Fig. 4. Combined nanoflare energy distribution (black) derived from all
data sets. A linear fit (blue) in log-log space without weights was used
to extract the power-law index (α) and its fitting error (σ).

five orders of magnitude in energy and follow a close power-
law distribution from 1024 to 1029 erg. The lower cut-off of the
combined frequency distribution at 1024 erg is expected since all
individual distributions also have their cut-off in this range with
minimal variation. Individual distributions show a high energy-
cutoff of the continuous frequency distribution in the range of
1027 to 1028 erg, with only single, separated events found at even
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Fig. 5. Combined nanoflare area distribution (black) derived from all
data sets. A linear fit (blue) in log-log space without weights was used
to extract the power-law index (α) and its fitting error (σ).

higher energies. These high energy events could have significant
uncertainties since they may heavily depend on accurate event
combinations between many pixels, one of the most challenging
steps in the event detection algorithm. It is therefore promising
for the developed method that the combined statistics of these
large events extend the continuous part of the power-law slope
up to 1028 erg, consistent in steepness with the lower energy part
of the frequency distribution that has much better statistics.

Figure 5 shows the distribution of detected total event ar-
eas for the combined data sets, with the total event area be-
ing the sum of all pixels that were combined into one event.
The distribution shows a clear maximum at an event size of
3.1 × 1016 cm2 (corresponding to one binned pixel, i.e., 4 × 4
original AIA pixels) and a continuous decrease in frequency for
larger event sizes that follows a power-law over more than three
orders of magnitude to almost 1020 cm2 (corresponding to about
3000 binned pixels). For comparison, we note that this maximum
area roughly corresponds to the upper range of the H-alpha sub-
flare importance class. We fit a linear function to the distribution
and derive a power-law index of α = 3.04±0.09. Analysis of the
individual data sets showed that they all follow a similar power-
law distribution with power-law indices between 2.4 and 3.7 and
no correlation (r = 0.14 ± 0.17) to the ISN.

3.2. Energy flux and spatial distributions

The energy flux is defined as the derived thermal event en-
ergy per unit time and area and is therefore given in units of
erg cm−2 s−1. To calculate the mean energy flux of a specific data
set, we first sum up the energy from all events observed in that
data set and then divide the resulting total energy by the obser-
vation duration and the area of the observed FOV. This value
can then be compared with the heat flux requirements needed
for coronal heating in order to conclude whether the observed
nanoflares provide sufficient thermal energy.

In Figure 6 we show the observed mean energy flux for each
data set and their evolution over the solar cycle and the scat-
ter plots against the ISN. The observed mean energy flux re-
mains mostly in the range of 2 × 104 to 6 × 104 erg cm−2 s−1.
We find a significantly higher mean energy flux (about 1.1 ×
105 erg cm−2 s−1) in the data set from 2016-02-01. This results

Fig. 6. Top: Mean energy flux from nanoflares as a function of time
along with the ISN. Bottom: Scatter plot of mean energy flux against
ISN. A linear function (blue) in log-log space was fitted to the data
yielding the indicated Pearson correlation coefficient r.

in a strong outlier that is not included in the plots. No significant
correlation of the mean energy flux to the ISN is found, with
a correlation coefficient of r = −0.16 ± 0.14. However, a dip
in mean energy flux during the years 2012 and 2013 coincides
with the decreased ISN during this period. This matches the de-
crease in event frequency at 1025 erg that was shown in Fig. 3
and is, therefore, likely a result of the slightly decreased over-
all frequency of the observed events in that timeframe. From the
combined energy distribution in Fig. 4, we derive a mean energy
flux of (3.7 ± 1.6) × 104 erg cm−2 s−1.

To examine the spatial distribution of the thermal energy flux
in each dataset, we also calculate the energy flux for each indi-
vidual pixel by dividing the sum of all event energies detected in
that pixel by the observation time and the area covered by just
one single pixel. Figure 7 shows the obtained spatial distribution
of energy flux for all data sets. We find that the energy flux is
not evenly distributed across the FOV but forms clusters of high
energy flux with extended regions of low energy flux in between.

In addition to smaller clusters, some data sets are also char-
acterized by large-scale structures with high energy flux. For
example, the 2016-02-01 data set, which was excluded from
Fig. 6, shows extensive red bands of high energy flux (> 1.5 ×
105 erg cm−2 s−1) in the spatial distribution. In other regions,
event observations are completely absent and therefore appear
black in the images shown. The most prominent example is
found in the 2014-02-19 dataset. Interestingly, most areas where
no flux was detected are surrounded by areas of high energy flux.
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Fig. 7. Spatial distribution of the derived energy flux per pixel for all data sets. The beginning of each observation is annotated on top.

In addition, sharply outlined rectangular regions of reduced en-
ergy flux can be seen in the lower right quadrant of some of the
later observations, most evident in the 2018-02-18 data set. The
reasons for this effect remain unclear.

We plot contours of pixels with an energy flux > 5 ×
104 erg cm−2 s−1 on top of HMI line-of-sight magnetograms in
order to study the relationship between high energy flux regions

with the underlying photospheric magnetic field. A selected im-
age is shown in Figure 8. We find that the areas with the high-
est energy flux tend to be located in the magnetic network, with
a preference for boundary regions of enhanced, oppositely di-
rected fields.

Figure 9 shows frequency distributions of absolute mag-
netic flux density in pixels corresponding to different energy flux
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Fig. 8. HMI line-of-sight magnetogram with green contours mark-
ing nanoflare regions that exceed an energy flux per pixel of 5 ×
104 erg cm−2 s−1 over the 2-hr observation time. Magnetogram is sat-
urated at ±15 G.

ranges. Information about the spatial distribution of magnetic
flux is extracted from the co-registered HMI line-of-sight mag-
netograms observed at the beginning of each data series. The
Figure presents the mean frequency distributions derived from
the data of all data sets, excluding pixels with zero energy flux.
Frequencies are derived by normalizing each bin by its abso-
lute magnetic flux density range and the area covered by the in-
cluded pixels. We find that low absolute magnetic flux densities
are predominant independent of the chosen energy flux interval.
However, regions with higher observed energy flux show sig-
nificantly increased frequencies of regions with higher absolute
magnetic flux density. On the other hand, low energy flux regions
show decreased frequencies for high absolute magnetic flux den-
sity regions compared to the overall flux density distribution. We
find a mean absolute magnetic flux density of 3.1, 4.2, 5.3, 8.0,
14, and 28 G for the logarithmic energy flux intervals of < 3.83,
3.83 to 4.17, 4.17 to 4.50, 4.50 to 4.83, 4.83 to 5.17, and >5.17
erg cm−2 s−1.

Figure 10 shows the frequency distribution of energy flux in
all pixels from all data sets for different absolute magnetic flux
density intervals of the co-registered HMI line-of-sight magne-
togram. Frequencies are derived by normalizing each bin by its
energy flux range and the area covered by the included pixels.
We find that regions with higher absolute magnetic flux density
have increased frequencies of high energy flux regions and re-
duced frequency of low energy flux regions, with a pivot point
at about 3 × 104 erg cm−2 s−1 for which we find about the same
frequency independent of the chosen absolute magnetic flux den-
sity interval. We find a mean energy flux of 2.3, 3.3, 5.0, 5.7, 6.7,
and 8.9 ×104 erg cm−2 s−1 in the intervals of < 5, 5 to 25, 25 to
50, 50 to 100, 100 to 200, and > 200 G, respectively.

In addition to the energy flux, we also examine the number
of events per pixel for each data set. This allows us to study the
spatial distribution of nanoflares independent of their energy. We
find that a large number of pixels (> 80%) have at least one event
in all data sets, with some data sets showing activity in nearly
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100% of pixels. However, the number of events is not evenly
distributed but shows clusters of high activity that are very simi-
lar in appearance to the energy flux clusters. We also find square
regions of reduced activity in the lower right corner of some data
sets that match the previously discussed areas of reduced energy
flux. They are characterized by a well-defined edge where the
event count suddenly drops for unknown reasons. Therefore, the
observed drop in energy flux is possibly due to fewer events in
this area.

4. Discussion

4.1. Power-law

The individual datasets from the years 2011 to 2018 produce
power-law distributions that vary in steepness, with power-law
indices in the range of α = 2.02 to 2.47. However, we find
no significant correlation between the power-law index and the
ISN (r = 0.17 ± 0.18). This observation is consistent with
the avalanche model proposed by Lu & Hamilton (1991) and
matches results of the frequency distributions of solar flares in
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hard X-ray (Crosby et al. 1993) and soft X-rays (Veronig et al.
2002).

We also do not find a correlation of the second fitting pa-
rameter (represented as the frequency at 1025 erg in Fig. 3) with
the level of solar activity. These findings imply that in quiet-
Sun regions, there is no change in the energy contribution by
nanoflares to the coronal heating (and brightness) over the solar
cycle. This is in contrast to ARs, where the contribution of reg-
ular flares changes in their occurrence frequency. As was shown
in the analysis of GOES X-ray flares by Veronig et al. (2002),
the overall frequency varies by more than an order of magnitude
over the solar cycle, whereas also in this case, the shape of the
distribution (α) remains constant.

We have consistently found a power-law distribution of α >
2 in all data sets, which suggests a dominance of lower energy
events in the coronal heating process (Hudson 1991). This is also
true for any of the other event detection parameter combinations
we applied during the development of the presented method.
However, they all rely on other fundamental assumptions that we
did not vary. These include, in particular, the thermal energy cal-
culation and filling factor, the scaling of the events line-of-sight
depth relative to the detected area (h =

√
A), and the threshold

calculation for the event detection.
Parnell (2004) did an extensive study where she investigated

the effects of a broader range of assumptions on the observed fre-
quency distribution. She concluded that the exact determination
of frequency distributions by direct observations of nanoflares is
not possible. From this investigation of 1200 differently tuned
event detection and power-law extraction methods, all according
to physically sensible assumptions, a wide range of frequency
distributions (α = 1.5 to 2.6) was obtained. We note that similar
considerations and caveats may apply to any nanoflare frequency
studies, including the one presented here.

Figure 11 is adapted from Hannah et al. (2011) and shows
our combined nanoflare distribution together with solar nano-
and microflare distributions derived by previous studies. Our dis-
tribution is very similar in steepness to the result from Benz
& Krucker (2002) who found α = 2.3 ± 0.1 in their nanoflare
studies using EIT data and considering the same height model
as was used in this study. The spatial resolution of 2.6′′ of the
EIT instruments is also similar to the 2.4′′ spatial resolution of
the binned AIA pixels used in our study. A slightly less steep
slope was found by Parnell & Jupp (2000) with a power-law in-
dex in the range of α = 2.0 to 2.1 using TRACE data and the
same height model. Aschwanden et al. (2000) reported a smaller
power-law index of α = 1.8 in their nanoflare study of TRACE
data. Our results show an excellent fit to the suggested com-
mon power-law distribution of all studies and reach well into
the microflare energy range studied by Shimizu (1995) and Han-
nah et al. (2008). However, we note that this comparison to mi-
croflares is somewhat deceptive as their frequency distributions
are derived from soft X-ray observations with different biases
and selection effects compared to the EUV nanoflares. Further-
more, microflares occur in active regions, and their occurrence
rate is not independent of the solar cycle phase. We have cho-
sen to include the microflare observations to better demonstrate
the extensive energy range covered by our study and how the
nanoflare energies relate to those of microflares, but we do not
directly compare their power-law index and overall frequency.
We refer to Hannah et al. (2011) for more detailed discussions
on the caveats of combing the different (nano/micro) flare distri-
butions.

What is specific about the present study is the much more
extensive range of energies that is covered compared to any pre-
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Fig. 11. Comparison of solar flare energy distributions derived by differ-
ent studies. Shown are EUV nanoflares observed with either SOHO/EIT
by Benz & Krucker (2002) or TRACE by Parnell & Jupp (2000) and As-
chwanden et al. (2000). Microflares where observed with Yohkoh/SXT
by Shimizu (1995) and with RHESSI by Hannah et al. (2008). The
combined AIA nanoflare observations from this study is also included
and added by the black dashed line. Figure adapted from Hannah et al.
(2011).

vious nanoflare study, spanning over five orders of magnitude.
We assume that this is related to the set-up of our study by a)
being sensitive also to small and short-lived events (high time
cadence, multi-band DEM analysis), b) using different data sets
distributed over different phases of the solar cycle, and c) con-
sidering in the analysis in total a longer time series than previ-
ous nanoflare studies which makes it more likely to catch also
the less frequently occurring larger nanoflares. This is also seen
in the frequency distributions of the individual data sets (Fig. 2),
where all data sets reach to the lower energy cut-off of about 1024

erg, but not all data sets also show events > 1027 erg.

4.2. Energy Flux and contribution to Coronal Heating

From the individual 30 data sets, we derived mean energy fluxes
in the range of 2 × 104 to 6 × 104 erg cm−2 s−1 by averaging the
total detected event energy of a data set over the two hour obser-
vation time and observed FOV. Our results show no significant
correlation between the observed mean energy flux and the ISN.
However, a slight tendency of higher energy flux in the second
half of the multi-year observation period is visible, as well as
a dip in energy flux in the years 2012 and 2013. For the com-
bined distribution of all data sets, we derive a mean energy flux
of (3.7 ± 1.6) × 104 erg cm−2 s−1. This accounts for about 12%
of the minimum heating rate of 3 × 105 erg cm−2 s−1 required to
heat the solar corona (Withbroe & Noyes 1977).

Krucker & Benz (1998) initially derived a thermal input of
7.1×104 erg cm−2 s−1 in their nanoflare study but later corrected
these results with the more accurate event depth model (h =

√
A)

also used in this study. They arrived at a corrected thermal en-
ergy input of about 2.2×104 erg cm−2 s−1, which corresponds to
about 7% of the minimum heating requirement. Parnell (2004)
reported a thermal energy input of 2.9× 104 erg cm−2 s−1 (about
10%) for the matching height model. Thus, we find similar en-
ergy fluxes compared to these previous studies. The generally
low values are an inherent problem of this type of nanoflare
study and have already been discussed in detail in previous stud-
ies (e.g. Benz & Krucker 2002; Joulin et al. 2016).
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Nevertheless, we can assume that the observed frequency
distribution is the actual nanoflare frequency distribution and ex-
trapolate how far the distribution would have to continue to even
smaller event energies to account for 100% of the heating re-
quirement. If we use the found power-law index of the combined
data sets of α = 2.28, we find that the distribution would have to
extend down to about 5×1020 erg, i.e., about 3.5 orders of magni-
tude lower than the cut-off energy in our study. This requirement
moves towards higher energies if our frequency distribution un-
derestimates either the thermal energy release per event (shift to
the right) or the overall frequency (shift upwards). Because of
our steep slope (α > 2), an extension of the frequency distribu-
tion to larger events (above 1029 erg) results only in negligible
addition to the total energy flux.

However, calculation of the thermal energy input using the
EM enhancement at the event peak (see Eq. 5) underestimates
the coronal energy input by the observed nanoflares since radi-
ation and conduction losses already reduced the thermal energy
during the event. As in nanoflares, the rise time is similar to the
decay time, Benz & Krucker (2002) estimate that about half of
the radiative losses occur before the event peak, which would
lead to an underestimate of the thermal energy input by at least
a factor of 2. Additional "unobserved" energy is needed for the
expansion of chromospheric plasma, where the expansion en-
ergy exceeds the thermal energy by about a factor of 3 (Benz &
Krucker 2002). The reconnection process also produces plasma
motions and waves that are not observed. These considerations
imply that the nanoflare energy may be up to an order of magni-
tude larger than the thermal energy derived at the EM peak and
demonstrate that the above-given estimate for the needed lower
energy extent of the power-law distribution should only be con-
sidered a lower limit, with the actually required smallest events
being at much higher energies.

4.3. Spatial Distribution and magnetic characteristics of
Events

We analyzed the spatial distribution of events and energy flux
in all data sets and found that they are not distributed homo-
geneously across the FOV. Instead, they form clusters with in-
creased occurrence and extended areas of reduced activity in be-
tween.

We find that most pixels (at least 80%) are active in each
data set for the used event detection parameter set. This is in
contrast to Parnell & Jupp (2000), who found that only 16% (for
2σ events) of the pixels in their quiet-Sun observations contain
at least one event. As the main reason, the authors give the short
observation time of 15 min and note that Benz & Krucker (1999)
found a significantly higher fraction of active pixels in their 42
min observations. Our high number of active pixels can presum-
ably also be explained by the much longer observation time of
2 hours per data set. Another factor could be the local threshold
we set for each pixel instead of one global value. This increases
the sensitivity for small events in dimmer pixels where we would
otherwise not find any events.

The fraction of active pixels is also dependent on the used
threshold factor. Raising the threshold factor to F = 7 brings the
fraction of active pixels in all data sets down below 50% with
a large portion of data sets only containing about 20% active
pixels. The fraction of active pixels is further decreased to< 20%
for all data sets at a threshold factor of F = 9. We conclude
that the number of active pixels will approach a high fraction of
the total observed pixels given a long enough observation time
and a low enough threshold. However, the combined effect of

both factors makes this fraction of active pixels hard to compare
between different studies.

Comparisons with HMI line-of-sight magnetograms reveal
that the high-activity clusters are located mainly in the magnetic
network, preferentially in mixed flux regions of opposite polar-
ities. We find that high energy flux regions show an increased
frequency of absolute magnetic flux density in the co-registered
HMI magnetograms compared to the overall frequency distribu-
tion. The frequency of pixels with absolute magnetic flux den-
sity > 200 G increases by at least an order of magnitude in areas
with an energy flux > 105.17 compared to the overall distribution.
Furthermore, energy flux frequency distributions of different ab-
solute magnetic flux density intervals show an increase in the
frequency of high energy flux pixels in regions with higher ab-
solute magnetic flux density. In regions with absolute magnetic
flux density > 200 G, the occurrence frequency of pixels with
energy flux > 2 × 105 erg cm−2 s−1 is increased by at least one
order of magnitude compared to the overall energy flux distri-
bution. This increase in frequency approaches nearly two orders
of magnitude for pixels with energy flux of 106 erg cm−2 s−1. At
the same time, the frequency of lower magnetic flux density pix-
els is reduced in those same regions. The results from both the
energy flux and the absolute magnetic flux density distributions
show a strong correlation between our detected events and the
underlying magnetic field. Together with the finding that they
are preferentially located in mixed polarity regions, this makes
it likely that the observed nanoflares are indeed magnetic recon-
nection events.

5. Conclusion

In this study, we investigated the frequency distributions of
nanoflares and their characteristics in quiet-Sun regions through-
out the years 2011 to 2018 to analyze their energy contribution to
coronal heating and to study possible changes due to variations
in solar activity. We used DEM analysis on the multi-band EUV
images from AIA, applying a threshold-based tunable event de-
tection algorithm specifically developed for AIA data character-
istics.

For all 30 data sets, we find nanoflare frequency distributions
with continuous power-law slopes over multiple orders of mag-
nitude in thermal event energy for all individual data sets. The
frequency distributions calculated from the individual data sets
reveal individual power-law indices in the range of α = 2.02 to
2.47. The parameters of the fitted power-law distributions reveal
no correlation with the ISN, which indicates that the nanoflare
contribution to the quiet-Sun coronal heating does not change
over the solar cycle. The combined frequency distribution of all
data sets, with a total observation time of 60 hours at a 12-second
temporal resolution, shows a power-law distribution over five or-
ders of magnitude in thermal event energy (1024 to 1029 erg) with
a power-law index of α = 2.28±0.03, indicating that the heat in-
put into the corona is dominated by the lower energy part of the
distribution. The mean energy flux derived from the combined
data set is (3.7±1.6)×104 erg cm−2 s−1, which is about an order
of magnitude smaller than the required coronal heat input. The
observed frequency distribution would have to continue down to
events with a thermal energy of about 5 × 1020 erg in order to
balance the total energy loss of the corona.

Regions with large energy flux form clusters located prefer-
entially at the boundaries of the magnetic network and show a
strong correlation to the underlying absolute magnetic flux den-
sity. We found that regions with > 200 G have an increased fre-
quency of pixels with energy flux > 2 × 105 erg cm−2 s−1 by at
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least one order of magnitude compared to the overall energy flux
distribution. These findings suggest that the detected events are
small-scale magnetic reconnection events.
Acknowledgements. AIA and HMI data are courtesy of NASA/SDO and the AIA
and HMI science teams. SP and AMV acknowledge the Austrian Science Fund
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